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Diffusion-limited reactions of hard-core particles in one dimension

P.-A. Bares and M. Mobilia
Institut de Physique The´orique, École Polytechnique Fe´dérale de Lausanne, CH-1015 Lausanne, Switzerland

~Received 15 September 1998!

We investigate three different methods to tackle the problem of diffusion-limited reactions~annihilation! of
hard-core classical particles in one dimension. We first extend an approach devised by Lushnikov@Sov. Phys.
JETP64, 811 ~1986!# and calculate for a single species the asymptotic long-time and/or large-distance behav-
ior of the two-point correlation function. Based on a work by Grynberg and Stinchcombe@Phys. Rev. E50, 957
~1994!; Phys. Rev. Lett.74, 1242~1995!; 76, 851~1996!#, which was developed to treat stochastic adsorption-
desorption models, we provide in a second step the exact two-point~one- and two-time! correlation functions
of Lushnikov’s model. We then propose a formulation of the problem in terms of path integrals for pseudo-
fermions. This formalism can be used to advantage in the multispecies case, especially when applying pertur-
bative renormalization group techniques.@S1063-651X~99!03902-1#

PACS number~s!: 05.70.Ln, 47.70.2n, 82.20.Mj, 02.50.2r
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I. INTRODUCTION

The recent interest in modeling low-dimension
diffusion-limited reactions has been stimulated in part by
experimental observation of anomalous kinetics in lo
dimensional systems@1#. The traditional approach to chem
cal reactions is based on mean-field theory, i.e., rate e
tions for the densities of the various reactants. The la
describe well the reaction kinetics in three dimensions
cause diffusive transport of reactants allows one to elimin
the spatial fluctuations of the concentrations. However
lower dimensions, due to the lack of phase space, the r
tants spatial fluctuations can grow and develop inhomoge
ities in the concentrations. Furthermore, even in the spati
homogeneous case, the rate equations are not applicab
less than three dimensions; for example, in the two-spe
diffusion-limited annihilation the concentration of the pa
ticles decays~for identical initial concentrations! slower than
the mean-field theory predicts. Thus the fluctuatio
dominated dynamics is beyond the classical theories, yet
be accounted for by simple one-dimensional~1D! models of
hard-core particles. The latter are solved either numeric
or analytically by applying techniques from~classical or
quantum! statistical mechanics@1#. In particular, exact solu-
tions have been obtained by interparticle distribution me
ods by relating the systems to dual and solvable 1D mo
@2–5# ~kinetic Ising and Potts! and by mapping the diffusion
reaction processes to an imaginary-time dynamics of qu
tum spin chains with non-Hermitian Hamiltonians@5#. An
alternative and fruitful approach has been developed
Cardy and collaborators@6–9#: The idea is to reformulate th
original problem in terms of a field theory of interactin
bosons and subsequently use renormalization group t
niques. This is a powerful method as it applies to arbitr
dimension and low densities of particles, a regime wh
universal behavior~scaling! is usually observed. Despite th
progress achieved in this field, the multispecies case is
poorly understood. Furthermore, when the density of p
ticles is high, the hard-core constraint on the dynamics of
diffusing particles becomes important. Experimentally,
single-species fusion model used to describe the photolu
PRE 591063-651X/99/59~2!/1996~14!/$15.00
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nescence of excitons diffusing along one-dimensional cha
is seen to apply only as long as the initial exciton densit
are small@1#. To our knowledge, there has been no syste
atic effort yet to investigate theoretically the regime of hi
densities of reactants.

This is a technical paper in which we will explore a
approach that attempts to remedy the difficulties encounte
so far. We propose to start from a quantum spin chain f
mulation of the master equation, fermionize~introduce a ba-
sis of fermion states!, and subsequently apply renormaliz
tion group techniques to deal with the interaction ter
arising in the multispecies case. Note that in the single s
cies case, the method applies at arbitrary densities as the
core of the classical particles is automatically accounted
by the Fermi statistics. When various species react and
fuse, it is appropriate to distinguish two cases.~i! The vari-
ous species have infinite on-site repulsion with themsel
only; this can be treated readily following the methods o
lined in the following sections.~ii ! The particles of different
species all have a hard-core constraint; this is far more
ficult and will be investigated elsewhere. As with the oth
methods devised so far, there is a price to pay: The calc
tions involved are sometimes extremely tedious.

The purpose of this paper is modest as we will focus
the single-species case for which fermion-fermion inter
tions do not arise as a consequence of mapping clas
particles to fermions. We want to show explicitly how b
elementary means we can reproduce known results~the long-
time behavior of the density! and derive some other result
i.e., the explicit and exact analytical form of the two-poi
correlation one- and two-time functions. The paper is
tended as an introduction to the fermionic functional integ
tion approach that we plan to combine in future work w
the renormalization techniques to treat the multispecies c

In Sec. II we define the model, introduce notation, a
review an extension of a method developed by Lushnik
Section III is devoted to the application of an elegant te
nique introduced by Grynberg and Stinchcombe in a diff
ent context to evaluate the two-point~one-time! correlation
function. Section IV deals with a powerful formulation of th
problem in terms of path integrals of pseudofermionic va
1996 ©1999 The American Physical Society



m
pe

e
tic

a

t

o

e

1

a

re
n

m
i

e

t b
u

in
nt

n
’’

,
in-

il-

-

as

.,
s-

PRE 59 1997DIFFUSION-LIMITED REACTIONS OF HARD-CORE . . .
ables. We illustrate the technique by computing the two-ti
correlation function. A brief discussion concludes the pa
in Sec. V.

II. LUSHNIKOV’S APPROACH

This section introduces notation and summarizes and
tends Lushnikov’s genuine approach. We consider a lat
of N ~even! sites ~length L5Na, a51, and assumeN/2
even!, with periodic boundary conditions, on which classic
~spinless! particles with a hard core can diffuse~annihilate!
to adjacent empty~occupied! sites with rateD. Whenever the
arrival site is occupied, an annihilation reaction (111
→B) takes place. A source of intensityJ injects pairs of
particles on adjacent sites (B→111). Lushnikov@10# has
managed to rewrite the master equation that describes
annihilation and diffusion processes described above
terms of an imaginary-time Schro¨dinger equation

d

dt
uc~ t !&5Luc~ t !&, ~1!

whereL denotes the so-called Liouvillian, which by abuse
language we will call a non-Hermitian Hamiltonian.uc(t)&
represents the state of the system at timet,

uc~ t !&5(
$n%

S P~$n%,t ! )
m8~$n%!

sm8~$n%!
1 D u0&, ~2!

wherem8($n%) represents the sites of configuration$n% that
are occupied. The Liouvillian is given by@10#

L5~J1D !(
m

~sm
1sm11

1 1sm
1sm11

2 1sm
2sm11

1 1sm
2sm21

2 !

1D(
m

~sm11
2 sm

22sm11
1 sm

122sm
1sm

2!2JN. ~3!

When J50, i.e., there is no source, in addition to diffusiv
processes with a rateD, only irreversible reactions (111
→B) with rate 2D take place.

For a finite (J.0) source, the diffusive processes (
1B→B11 and B11→11B) take place with rateJ
1D and we also have reversible reactions: Particles are
nihilated (111→B) with rate J12D and created (B→1
11) with rateJ. It is worth emphasizing that these rates a
not independent and are chosen such that the Liouvillia
quadratic in the spin variables for a single species~the
higher-order terms cancel due to the properties of Pauli
trices!. In then-species case, this property no longer holds
we assume hard-core repulsion between all species. Ind
one obtains a spin Hamiltonian (S5n/2) that is a polynomial
of higher order in the spin operators and in general canno
solved exactly. If, however, we assume infinite on-site rep
sion only between particles of the same species, we can
write the Hamiltonian as a quadratic form of coupled sp
1/2. The latter can be solved by the techniques prese
e
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below. We also point out that in this model the ‘‘annihilatio
rate’’ (J12D) is always bigger than the ‘‘creation rate
(J).

To solve the Schro¨dinger equation in imaginary time
Lushnikov performs a Jordan-Wigner transformation and
troduces the fermionic operatorsam5) j ,m(122nj )sm

2 .
Because of the form of the resulting non-Hermitian Ham
tonian, it is appropriate to work with Fourier modesaq

5(ei (p/4)/AN)(mame2 iqm. The antiperiodic boundary con
ditions @11# lead toq56(2l 21)p/N, l 51,2, . . . ,N/2. On
Fourier transforming, the evolution operator readsL
5(q.0Lq , where (nq[aq

1aq)

Lq52~J1D !@cosq~nq1n2q!1sinq~aqa2q2aq
†a2q

† !#

12D@sinq~aqa2q1aq
†a2q

† !2~nq1n2q!#2JN. ~4!

Now, by a BCS-like ansatz

uc~ t !&5 )
q.0

ucq~ t !&5 )
q.0

@Aq~ t !aq
†a2q

† 1Bq~ t !#u0&,

~5!

Lushnikov@10# is able to decouple the dynamical equation

d

dt
ucq~ t !&5Lqucq~ t !& ; q.0. ~6!

For a lattice that is initially completely occupied, i.e
Aq(0)51 andBq(0)50, one solves the above equations u
ing

Aq~ t !5
1

4~J12D !sin2S q

2D ~p2ep2t2p1ep1t!,

Bq~ t !5
2~J12D !sinq

2~J12D !sin2S q

2D ~ep2t2ep1t!, ~7!

where

p1522~J12D !~12cosq!, p252J~11cosq!. ~8!

In the absence of a source (J50), the solution simplifies
considerably to

Aq~ t !5exp@24Dt~12cosq!#,

Bq~ t !5cotS q

2D $exp@24Dt~12cosq!21#%. ~9!
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At this point it is worth noting that the ketuc(t)& character-
izes the state of the system at any time without, howe
being an eigenvector ofL ~the Liouvillian is not normal;
however, see below!.

In Ref. @10# Lushnikov calculates the density of particle
by the method of the generating function, which we exte
in order to evaluate the two-point correlation function. T
density reads

r~ t !5(
$n%

ñi~$n%!P~$n%,t ! ; i , ~10!

where ñi50,1 is the eigenvalue of the occupation opera
ni5ai

†ai . Similarly, the two-point correlation function i
written as

Gr~ t ![^ñi ñi 1r&~ t !5(
$n%

ñi~$n%!ñi 1r~$n%!P~$n%,t !,

~11!

where the translational symmetry of the system has b
used. We observe that in this formalism

r~ t !5^0uexpS (
n

sn
2Dni uc~ t !&,

Gr~ t !5^0uexpS (
n

sn
2Dnini 1r uc~ t !&, ~12!

as one can check using the explicit form ofuc(t)& ~develop
the exponential, order each term, and perform a Jord
Wigner transformation@10#!. It is appropriate to consider th
generating function

G~x,y,z,t !5^0uexpS xs i
21ys i 1r

2 1z (
nÞ i ,i 1r

sn
2D uc~ t !&

5(
$n%

xñiyñi 1rz( j ñ j 2ñi2ñi 1rP~$n%,t !. ~13!

So we have

r~ t !5
]

]x
G~x,z,z,t !U

x,y,z51

,

Gr~ t !5
]2

]x ]y
G~x,y,z,t !U

x,y,z51

. ~14!

To compute the generating function, we rewrite the state

uc~ t !&5 )
q.0

@Aq~ t !aq
†a2q

† 1Bq~ t !#u0&

5 )
q.0

S Bq~ t !2
2Aq~ t !

N (
n.m

am
† an

†sin~q@n2m# ! D u0&.

~15!

Note the normalization condition due to the conservation
probability
r,

d

r

n

n-

s

f

(
$n%

P~$n%,t !5 )
q.0

S Bq~ t !2Aq~ t !cot
q

2D51. ~16!

Next expand the argument of the exponential as

G~x,y,z,t !

5^0u H 11~xai1yai 1r1z!

3 (
nÞ i ,i 1r

an1Fz2 (
i 1rÞn.n8Þ i

anan8

1xzS ai(
n, i

an1 (
n. i ,nÞ i 1r

anai D
1yzS (

n. i 1r
anai 1r1ai 1r (

n, i 1r ,nÞ i
anD

1xyai 1rai G1•••J )
q.0

3S 2
Aq~ t !

N (
n.m

am
† an

†sin~q@n2m# !2Bq~ t ! D u0&.

~17!

In this expression, only the terms proportional to ‘‘xy’’
contribute toGr(t). Let us call the first of these termsG1 ,

G15^0uxyai 1rai

3 (
q.0 H 2

Aq~ t !

N (
n.m

am
† an

† sin~q@n2m# !

Aq~ t !cot
q

2
2Bq~ t !

3 )
qÞq8.0 S Bq8~ t !

Bq8~ t !2Aq8~ t !cot
q8

2
D J u0&

5xy
2

NS (
q.0

sinqr

cot
q

2
2

Bq~ t !

Aq~ t !
D S )

qÞq8.0

1

12
Aq8~ t !

Bq8~ t !
cot

q

2
D .

~18!

In the absence of source, we haveAq(t)→0 and Bq(t)→
2cot(q/2) exponentially fast@see Eq.~9!#, so that in the
thermodynamic limit (N→`), the asymptotic behavior o
Gr(t) follows as

Gr~ t !;
]2

]x ]y
G1→

1

pE0

p dq sinqr

cot
q

2
2

Bq~ t !

Aq~ t !

. ~19!

We can do the same for the density and in the thermo
namic limit one obtains
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r~ t !5
]

]x)q.0
^0u H 11S xai1z(

nÞ i
anD

1Fz2 (
iÞn,n8,n.n8

anan8

1xzS ai(
n, i

an1(
n. i

anai D 1•••G J
3S 2

Aq~ t !

N (
n.m

am
† an

†sin~q@n2m# !

2Bq~ t ! D u0&U
z51, x50

→
1

pE0

p dq

12
Bq~ t !

Aq~ t !cot
q

2

. ~20!

In the above, we used the identities

(
m. i

sin~q@m2 i # !5
1

2S cot
q

2
1

cos~q@ i 2 1
2 # !

sin
q

2
D ,

(
m, i

sin~q@m2 i # !5
1

2S cot
q

2
2

cos~q@ i 2 1
2 # !

sin
q

2
D

⇒ (
n.m

sin~q@n2m# !5
N

2
cot

q

2
.

~21!

The evaluation of the two-point correlation function requir
the calculation of all the terms proportional toxy, which in
general is a very hard task. In the following sections we w
be able to solve this difficulty by reformulating the proble
in a different language.

Using the explicit form ofAq(t) andBq(t) @Eqs.~7!–~9!#
and the results of the Appendix, we find the asymptotic
havior of the density in the~irreversible! critical caseas@10#

r~ t !5
e24Dt

p E
0

p

dq e4Dt cosq5e24DtI 0~4Dt !;
1

A8pDt
.

~22!

Similarly, the asymptotic behavior of the two-point correl
tion function is

Gr~ t !;
e24Dt

p E
0

p

dq
sinqr

sinq
~12cosq!e4Dt cosq

5e24Dt (
0<n,r

@ I 2n2r 11~4Dt !2I 2n2r~4Dt !#

;
pr

~8pDt !3/2
, ~23!
l

-

which implies for the connected correlation function that

Cr~ t ![Gr~ t !2r7~ t !;2
1

8pDt
. ~24!

Unfortunately, in the massive case~when the source intensity
is finite!, this method applies only to the computation of t
density. AssumingDt,Jt@1, we find that

r~ t !5req12~J12D !

3E
t

`

dt8e24~J1D !t8@ I 0~4Dt8!2I 1~4Dt8!# ~25!

;
AJ

AJ1AJ12D
1S 11

J

2D D e24Jt

8JtA8pDt
, ~26!

where req5AJ/(AJ1AJ12D) represents the equilibrium
value of the density, in agreement with Lushnikov’s res
@10#. In the next section we provide the full two-point corr
lation function forJ.0.

III. THE PSEUDOFERMIONIC APPROACH

In this section we evaluate the full two-point correlatio
function in the general case by means of a powerful form
ism. The central idea is to perform on the fermionic no
Hermitian ~and non-normal! Hamiltonian a generalized Bo
goliubov transformation, which allows us to work with
diagonal evolution operator~see Refs.@12,13#!. Following
previous works@12–14,5#, we denote each of the 2N possible
configurations by a ketun&:

^nun8&5dn,n8 , (
n

un&^nu51. ~27!

In this Fock space, we can efficiently record the probabilit
for the various configurations in the ket

uP~ t !&[(
n

P~n,t !un&. ~28!

The master equation governing the dynamics of the ann
lation and diffusion processes described in Sec. II can
rewritten as

]

]t
uP~ t !&5UuP~ t !&5(

n
] tP~n,t !un&

5 (
n,n8

@A~n8→n!P~n8,t !2A~n→n8!P~n,t !#un&,

~29!

whereU denotes the evolution operator andA(n8→n) and
A(n→n8) represent the transition rates expressed in term
J andD in Lushnikov’s formulation. The matrix elements fo
the operatorU are

^n8uUun&5A~n→n8! ; n8Þn, ~30!
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^nuUun&52 (
n8Þn

A~n→n8!. ~31!

This Fock-space formulation was used in Refs.@12,13# to
study a stochastic adsorption-desorption problem. In w
follows we will specifically focus on the reaction-diffusio
problem in one dimension.

Let us now introduce the left and right steady states,
spectively,

^x̃u[(
n

^nu, ux&[(
n

P~n,eq!un&, ~32!

where P(n,eq) denotes the probability for a configuratio
un& at equilibrium. It is easy to check thateLt has no effect
on ux& and ^x̃u and the conservation of probability leads

^x̃ux&51. The transition probability from a configurationun&
to un8& is simply Wn,n8(t)[^n8ueLtun&.

We intend to calculate the density and two-point one-ti
correlation functions of a system initially in the stateuf0&
[(nP(n,t50)un&. The occupation number operatornr be-
ing diagonal in the basis$un&%, we have

r~ t !5 (
n,n8

^n8unr un8&Wn,n8~ t !P~n,t50!

5 (
n,n8

^n8unre
Ltun&P~n,t50!5^x̃unre

Ltuf0& ~33!

and similarly

Gr~ t !5 (
n,n8

^n8unlnmun8&Wn,n8~ t !P~n,t50!

5 (
n,n8

^n8unlnmeLtun&P~n,t50!5^x̃unlnmeLtuf0&,

~34!

where r 5um2 l u. At this point, we perform a generalize
Bogoliubov transformation~rotation supplemented by a re
scaling!

S jq
†

j2q
D 5S a cosuq a21 sinuq

2a sinuq a21 cosuq
D S aq

†

a2q
D ~35!

in order to obtain a diagonal representation for the evolut
operator. This transformation is orthogonal, i.e., invertib
and canonical, in the sense that it preserves the anticom
tation relations of theaq’s, namely,

$jq
† ,jq8%5dq,q8 , $jq

† ,jq8
† %5$jq ,jq8%50. ~36!

Despite the fact that thejq and jq
† are not adjointof each

other, this representation will be very useful in the followin
We set a5@J/(J12D)#1/4, so that the modeq evolution
operator becomes
at

-

e

n

u-

.

2Lq52@D~12cosq!2J#@~jq
†jq1j2q

† j2q!cos2uq

1~sin2 uq!~j2qj2q
† 1jqjq

†!12~j2q
† jq

†1jqj2q!#

1AJ~J12D !sinq@~cos 2uq!~j2q
† jq

†1jqj2q!

1~sin 2uq!~jqjq
†1j2q

† j2q!#12J. ~37!

To get rid of the terms that do not conserve the number
pseudoparticles we chooseuq as

tan 2uq5
AJ~J12D !sinq

~J1D !cosq2D
~38!

so that the Hamilton operator becomes

L52 (
q.0

lq~jq
†jq1j2q

† j2q!52(
q

lqjq
†jq , ~39!

where

lq52@D~12cosq!1J# ~40!

on account of the periodic boundary conditions ((q.0 cosq

50). Now it is readily seen that^x̃u andux& act, respectively,
as left and right vacua, i.e.,jqux&50 and^x̃ujq

†50. To sim-
plify the calculations, we express the initial ket stateuf0& in
terms of the steady stateux&. We consider here two kinds o
initial conditions.~i! The whole lattice is initially filled. We
write uf0&5uall& and immediately concludeaq

†uall&50. Us-
ing the inverse of Eq.~35!, one can check that

uall&5 )
q.0

@12~cotuq!jq
†j2q

† #ux&

5expS 2(
q

cotuq

2
jq

†j2q
† D ux&. ~41!

~ii ! The lattice is initially empty. One can check in the sam
way @14# that

uf0&5u0&5 )
q.0

@11~ tanuq!jq
†j2q

† #ux&

5expS (
q

tanuq

2
jq

†j2q
† D ux&. ~42!

The time dependences ofjk(t) andjk
†(t) follow as

jk~ t !5e2LtjqeLt5e2lqtjk , ~43!

jk
†~ t !5e2Ltjq

†eLt5elqtjk
† . ~44!

Futhermore, we have

^jk1
jk2

&~ t50![^x̃ujk1
jk2

uall&5~cotuk1
!dk1 ,2k2

~45!

and
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^jk1
jk2

jk3
jk4

&~ t50!

5~cotuk1
!~cotuk3

!dk1 ,2k2
dk3 ,2k4

1~cotuk1
!~cotuk2

!~dk1 ,2k4
dk2 ,2k3

2dk1 ,2k3
dk2 ,2k4

!, ~46!

as one can check by applying Wick’s theorem~see also Sec
IV !. Using the properties of the Fourier transform and
generalized Bogoliubov transformation~35!, the expression
of the density and the two-point correlation function becom
respectively~for a lattice initially filled, uf0&5uall&),

r~ t !5
1

N (
k

sin2 uk

2(
k,k8

ei ~k82k!l

N
sinuk cosuk8^x̃uj2kjk8e

Ltuall&

~47!

and one can do the same for unconnected one-time cor
tion functionGr(t) @Eq. ~34!#.

To derive tractable formulas, we have performed tedio
but straightforward calculations. Indeed, we have extrac
the time dependence ofr(t) and Gr(t) using Eq.~43! and
commuted all the pseudocreation operators to the left of
pseudoannihilation operators. In the expression ofr(t) and
e

,

la-

s
d

e

Gr(t) only terms such aŝx̃uj2kjk8uall&5^j2kjk8& (t50)
and^x̃uj2kjk8j2qjq8uall&5^j2kjk8j2qjq8& (t50) survive:
These were evaluated with the help of Eqs.~45! and~46!. In
the thermodynamic limit, we arrive at

r~ t !5
2

N (
k.0

~sin2 uk1e22lkt sinuk cosuk cotuk!

→
1

pE0

p

dq~sin2 uq1e22lqtcos2 uq!

5
AJ

AJ1AJ12D
12~J12D !

3E
t

`

dt8@ I 0~4Dt8!2I 1~4Dt8!#e24~J1D !t8,

~48!

which coincides with Eq.~25!.
It is worth emphasizing that this result is general a

works for both themassive(JÞ0) and thecritical (J50)
cases. The point here is that the limitJ→0 is not singular,
despite the divergence of cotu→2`. In fact, integration
over k and k8 of terms proportional to sinuk cotuk8 yields
finite results. Therefore, we can perform the computatio
~35! at J finite and set subsequentlyJ50 in r(t) andGr(t).

Similarly, the two-point~one-time! correlation function is
evaluated for a lattice initially filled as (r 5um2 l u)
rties of
Gr~eq!5req
2 1

1

p2S E0

p

dq sin2 uq cosqr D S E
0

p

dq8 cos2 uq8 cosq8r D 1S 1

2pE0

p

dq sin 2uq sinqr D 2

, ~49!

Gr~ t !2Gr~eq!5@r~ t !22req
2 #1

1

p2S E0

p

dq e22lqt cos2 uq cosqr D S E
0

p

dq8 cos2 uq8 cosq8r D
1

1

2p2S E0

p

dq sin 2uq sinqr D S E
0

p

dq8e22lq8t cos2 uq8 cotuq8 sinq8r D
2

1

p2S E0

p

dq sin2 uq cosqr D S E
0

p

dq8 e22lq8t cos2 uq8 cosq8r D
2

1

4p2S E0

p

dq sin 2uq sinqr D S E
0

p

dq8 e22lq8t sin 2uq8 sinq8r D 2S 1

pE0

p

dq e22lqt cos2 uq cosqr D 2

2S 1

p2E0

p

dq e22lqt cos2 uq cotuq sinqr D S E
0

p

dq8 e22lq8t sin2 uq8 cotuq8 sinqr D , ~50!

where we separated the static contribution to the correlation function from the dynamic one. Using known prope
modified Bessel functions given~see the Appendix! and writing I m8 (x)[(d/dx)I m(x), we finally infer @notice thatGr(eq)
5req

2 #
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Gr~ t !5r~ t !212~J12D !~A02C0!E
t

`

dt8e24~J1D !t8@ I r~4Dt8!2I r8~4Dt8!#

1
AJ~J12D !B0

2 E
t

`

dt8e24~J1D !t8
r

2Dt8
I r~4Dt8!

2
~J12D !3/2

AJ
(

0<n,r
S E

t

`

dt8e24~J1D !t8$2I 2n2r 11~4Dt8!22I 2n2r~4Dt8!1I 2n2r8 ~4Dt8!% D
2S 2~J12D !E

t

`

dt8e24~J1D !t8@ I r~4Dt8!2I r8~4Dt8!# D 2

12~J12D !2F (
0<n,r

~2n2r !S E
t

`

dt8e24~J1D !t8
I 2n2r~4Dt8!

2Dt8
D G

3F (
0<n,r

S E
t

`

dt8e24~J1D !t8$2I 2n2r 11~4Dt8!22I 2n2r~4Dt8!1I 2n2r8 ~4Dt8!% D G . ~51!
te

it

ies

ell-
g

n

In the above formulaA0 ,B0 ,C0 have been defined by

A0[
1

pE0

p

dq cos2 uq cosqr, B0[
1

pE0

p

dq sin 2uq sinqr,

C0[
1

pE0

p

dq sin2uqcosqr ~52!

or, more explicitly, in the massive case@with the help of Eq.
~A12!#,

A05
J12D

p E
0

p dq

lq
S cosqr2

cosq~r 11!1cosq~r 21!

2 D
52~J12D !z r 21

~12z!2

4AJ212JD
, ~53!

B05
AJ~J12D !

p E
0

p dq

lq
@cosq~r 11!2cosq~r 21!#

52z r 21
12z2

2
, ~54!

C05
J

pE0

p dq

lq
S cosqr1

cosq~r 11!1cosq~r 21!

2 D
5Jz r 21

~11z!2

4AJ212JD
, ~55!

with the notation

z[
D

~J1D !1AJ212JD
<1. ~56!

The formula can be evaluated numerically. The connec
two-point correlation functionCr(t)[Gr(t)2r(t)2 follows
immediately from the above. To establish a connection w
the results derived previously@5# we explicitly evaluateCr(t)
d

h

whenJ50. Paying due attention to the apparent singularit
occurring in this limit, we find

Cr~ t !5
1

2p2E0

p

dq sin 2uq sinqr

3E
0

p

dq8e22lq8t cotuq8 sinq8r

2S 1

pE0

p

dq e22lqt cosqr D 2

2S 1

pE0

p

dq e22lqt cotuq sinqr D
3S 1

pE0

p

dq8 e22lq8t sin2 uq8 cotuq8 sinqr D~57!

or, in terms of elementary functions,

Cr~ t !5 (
0<n,r

e24Dt@ I 2n2r 11~4Dt !2I 2n2r~4Dt !#

1S (
0<n,r

e24DtI 2n2r D 2

2S (
0<n,r

e24DtI 2n2r 11D 2

2@e24DtI r~4Dt !#2.

~58!

This expression is equivalent to the result derived by a w
known mapping of Lushnikov’s model to Glauber’s 1D Isin
model @5#.

Finally, we compute @using formula ~A11!# the
asymptotic behavior of the two-point correlation functio
Cr(t) for Dt@1, Jt@1, andr ,`,
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Cr~ t !;2
z r 21e24Jt

8JtA8pDt
H ~J12D !~12z!21J~11z!2

1
rJ~J12D !

D
~12z2!J 1

4AJ~J12D !
. ~59!

As expected for a finite source intensityJ.0, the density
and one-time correlation function decay exponentially w
time. Morever, the one-time correlation function also dec
exponentially with distance.

A similar calculation can be performed for the case of
initial empty lattice (uf0&[u0&). In this case the densi
ty is r(t)52J* t

`dt8@ I 0(4Dt8)1I 1(4Dt8)#e24(J1D)t8;req

2e24Jt/A8pDt @10#. It has been shown@12#, via the
mapping to the Glauber dynamics, that the nearest neigh
connected function decays (Dt,Jt@1) as Cr 51

(t)

;reqe
24Jt/A2pDt.

The large-time and large-distance behavior of the o
time correlation function can also be studied. In fact, in
critical case it has been shown@4,5# that the one-time corre
lation function obeys a scaling form.

Here we investigate the behavior ofCr(t) in the limit
where r and Dt→` with u[r 2/8Dt finite. In the massive
case, we do not expect a scaling form

Cr~ t !;2A11
2D

J
z r 21~12z2!

g~r 2,u!

4r 2
, ~60!

where

g~r 2,u![Au3

p
e2Jr2/2Du. ~61!

The effect of the source is to disrupt the spatial correlatio
i.e., to make them short ranged. In this sense the finite so
prohibits the formation of arbitrarly large vacancy domain

In the next section we will introduce a field-theoretic a
proach to deal with two-time correlation function. Our a
proach and the results obtained thereby complement the
act treatments of the critical case@15#. It is worth pointing
out that Glauber calculated in his pioneering work the tw
time two-point spin correlations functions@2,16#.

IV. FIELD THEORETICAL REFORMULATION

The purpose of this section is to reformulate the results
the preceding section in field-theoretic language, i.e.,
terms of path integrals of fermionic variables~see, for ex-
ample, @17#!. We define the Grassmann numbershq ,hq* ,
which anticommute with each other and with the fermion
operators introduced in the preceding section, i
$hq ,hq8%5$hq* ,hq8

* %5$hq* ,hq8%50 and $hq ,jq8%
5$hq* ,jq8

† %5$hq* ,jq8%5$hq* ,jq8
† %50. We follow standard

practice and consider thecoherent statesassociated with the
fermionic variables. We recall that pseudofermionic ope
tors requiring the introduction of aleft vacuum^x̃u and a
right vacuumux&, ergo we define the rightuh& and the left
coherent stateŝh̃u, respectively, asuh&5exp(2(qhqjq

†)ux&
and ^h̃u5^xuexp(2(qjqhq* ). Despite the fact thatj and j†
s

n

or

-
e

s,
ce
.

x-

-

f
n

.,

-

are not adjoint of each other, we find the familiar results

^h̃ux&5^x̃uh&51,

^h̃uh&5expS (
q

hq* hqD , jquh&5hquh&,

^h̃ujq5
]

]hq*
^h̃u, ^h̃ujq

†5^h̃uhq* , jq
†uh&52

]

]hq
uh&.

Most importantly, the closure relation holds true, i.e.,

E )
q

dhq* dhq expS 2(
q

hq* hqD uh&^h̃u51. ~62!

At this point, we know from field theory how to calculat

^x̃unmeLtuall& and^x̃unmnm1re
Ltuall& using the path-integra

formalism. We discretize time inM infinitesimal intervals of
width e[ limM→`(t/M ).L is normally ordered and the clo
sure relation is inserted into the above formulas. We have
the density~for the lattice initially filled!

r~ t !5E )
q,a51, . . . ,M

dhq,a* dhq,a

3expS 2(
q,a

hq,a* hq,aD ^x̃unmuhM&

3^h̃MueLeMuhM21&•••^h̃2ueLe2uh1&^h̃1ueLe1uall&,

~63!

where

lim
M→`

^h̃1ueLe1uall&5expS 2
1

2 (
q

cotuqhq,1* h2q,1* D ,

~64!

^x̃unmuhM&

5
1

NS (k
sin2 uk2(

k,k8
sinuk cosuk8^x̃uj2kjk8uhm& D

5
1

NS (k
sin2 uk2(

k,k8
~sinuk cosuk8!hk,Mhk8,M D .

~65!

Taking the continuum limit@17#, we arrive at
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r~ t !5
1

NE )
q

dhq* ~ t ! dhq~ t !

3S (k
sin2 uk2(

k,k8
sinuk cosuk8hq~ t !hq8~ t !D

3expS 2(
q

cotuq

2
hq* ~0!h2q* ~0! D e2S0„h* ~ t !,h~ t !…,

~66!

where the Liouvillian operatorL acts as theHamiltonianof
field theory. By abuse of language we callS0„h* (t),h(t)…
the Euclidean actionof our problem, which is defined by

S0„h* ~ t !,h~ t !…

[E
0

t

dt8(
q

@hq* ~ t8!] t8hq~ t8!2L„hq* ~ t8!,hq~ t8!…#

1(
q8

hq8
* ~0!hq8~0!. ~67!

Taking averageŝ &S0
on the Gaussian distribution, the de

sity can be rewritten as

r~ t !5
1

NK S (k
sin2 uk2(

k,k8
~sinuk cosuk8!hq~ t !hq8~ t !D

3expS 2(
q

cotuq

2
hq* ~0!h2q* ~0! D L

S0

. ~68!

We proceed to discretize the free Euclidean actionS0 , which
is bilinear, as

S~q!5S 1 0 0 . . . . . . 0

2a 1 0 . . . . . . 0

0 2a 1 0 . . . 0

] � � � ] ]

0 � � � ] 0

0 . . . . . . 0 2a 1

D , ~69!

wherea[12(t/M )lq .
Following Ref.@17#, we find det@S(q)#51 and

lim
M→`

Sa,b
21 ~q!5e2lq~ ta2tb!

; a51, . . . ,M>b, ta5
at

M
. ~70!
Furthermore, we have in the continuum lim
@*)q dhq* (t) dhq(t)e2S051#

^hp~ t2!hp8
* ~ t1!&S0

5E )
q

dhq* ~ t ! dhq~ t !hp~ t2!hp8
* ~ t1!e2S0

5dp,p8e
2lp~ t22t1!. ~71!

Applying Wick’s theorem leads to

^jpjp8&~ t !5K hp~ t !hp8~ t !

3expS 2
1

2 (
q

~cotuq!hq* ~0!h2q* ~0! D L
S0

5dp,2p8~cotup!e22lpt. ~72!

With this result, it is straightforward to calculate the dens
using Eqs.~72! and ~68!.

The computation of the correlation function requir
evaluation of terms such as^jk1jk2jk3jk4&(t). We generate
in the standard fashion the multipoint correlation function
The generating functional in discretized time reads

Z@gq,a ;gq8,a8
* #5K expS (

q
H 2

1

2
~cotuq!hq,1* h2q,1*

1 (
a>2

~gq,a* hq,a1hq,a* gq,a!J D L
S0

.

~73!

Here gq,a ,gq,a* ~Grassman numbers! denote the coefficien
of the source terms. Note that this functional differs from t
usual field-theoretic one@17# by a term that codes the initia

condition, i.e.,)q.0ecot uqhq,1* h2q,1* . Taking this term into ac-
count, however, is no trouble, i.e.,

Z@gq,a ;gq8,a8
* #5H )

q.0
~eg2q,1* gq,1* cot uq1g2q,1* gq,1* g2q,1gq,1!J

3)
q,q8

)
i , j 52

M

egq,i* Si , j ~q!21gq8, jdq,q8. ~74!

Considering that the source term will be set to zero in
end of the calculation and noting that fora51 only pseudo-
creation operators contribute, we find it convenient to wo
with
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Z̃@gq,a ;gq8,a8
* #5)

q
expS 1

2
g2q,1* gq,1* cotuq

1(
q8

(
i , j .1

gq,i* elq~ t j 2t i !gq8, jdq,q8D . ~75!

From the definition it follows then that
^jk1
jk2

&~ t !5
d6Z̃@gq,a ;gq8,a8

* #

dg2q,1dgq,1* dgk1 ,M* dgk2 ,M* dgq,2dg2q,2
U

g5g* 50

~76!

or, more generally,
-time
^jk1
jk

18
•••jkn

jk
n8
&~ t !

[^x̃ujk1
jk

18
•••jkn

jk
n8
eLtuall&5^x̃ujk1

jk
18
•••jkn

jk
n8
eLt expS 2

1

2 (
q

cotuqjq
†j2q

† D ux&

5
d6nZ̃@gq,a ;gq8,a8

* #

dg2qn,1* dgqn,1* •••dg2q1,1* dgq1,1* dgk1 ,M* dgk
18 ,M

*
•••dgkn ,M* dgk

n8 ,M
* dgq1,2dg2q1,2•••dgqn,2dg2qn,2* U

g5g* 50

.

~77!

As an application of this field-theoretic formulation we will now extend our approach to the computation of the two
correlation function for an initial stateuf0&,

Gr~ t,t8![^nl 1r~ t1t8!nl~ t !&5^x̃unle
Lt8nl 1re

Ltuf0&

5 (
n,n8

^n8unl 1re
Lt8nle

Ltun&P~n,0!

5 (
n,n8,n9

^n8unl 1r un8&^n9unl un9&Wn8n9~ t8!Wn9n~ t !P~n,0!. ~78!

As above, we consider an initially filled lattice (uf0&5uall&).
To perform the computation ofG(r ,t,t8) we need to evaluate terms such as

^x̃ujpjp8e
Lt8jqjq8e

Ltuall&5K hp~ t1t8!hp8~ t1t8!hq~ t !hq8~ t !expS 2
1

2 (
k

cotukhk* ~0!h2k* ~0! D L
S0

. ~79!

This expression can be calculated by using the generating functional, where as beforet (t8) is discretized intoM (N)
infinitesimal time steps~respectively!, with M ,N→`:

^x̃ujpjp8e
Lt8jqjq8e

Ltuall&

5
d12Z̃@gq,a ;gq8,a8

* #

dg2q2,1* dgq2,1* dg2q1,1* dgq1,1* dgq,M* dgq8,M
* dgp,M1N* dgp8,M1N

* dgq1,2dg2q1,2dgq2,2dg2q2,2
U

g5g* 50

5e2~lp1lp8!~ t1t8!2~lq1lq8!t@~cotup cotuq dp,2p8dq,2q81 cotup cotup8 ~d2p,q8d2q,p82d2q,pd2p8,q8!#, ~80!

where the continuum limit for the time has been taken. Applying the same technique to each term ofG(r ,t,t8) yields
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Gr~ t,t8!5req
2 12~J12D !reqE

t

`

dT e24~J1D !T@ I 0~4DT!2I 1~4DT!#

1J~J12D !S E
t8

`

dT e22~J1D !T@ I r~2DT!1I r8~2DT!# D S E
t8

`

dT e22~J1D !T@ I r~2DT!2I r8~2DT!# D
1

J~J12D !

4 S E
t8

`

dT e22~J1D !T
r

DT
I r~2DT! D 2

22~J12D !2S E
t8

`

dT e22~J1D !T@ I r~2DT!2I r8~2DT!# D
3S E

t

`

dT e22~J1D !~2T1t8!@ I r„2D~2T1t8!…2I r8„2D~2T1t8!…# D
1~J12D !2S E

t8

`

dT e22~J1D !T
r

2D~2T1t8!
I r~2DT!D

3S (
0<n,r

E
t

`

dT e22~J1D !~2T1t8!@2I 2n2r 11„2D~2T1t8!…22I 2n2r„2D~2T1t8!…1I 2n2r8 „2D~2T1t8!…# D
1J~J12D !S E

t

`

dT e22~J1D !~2T1t8!@ I 0„2D~2T1t8!…2I 1„2D~2T1t8!…# D
3S E

t8

`

dT e22~J1D !T@ I 0~2DT!1I 1~2DT!# D
2

J~J12D !

2 S E
t

`

dT e22~J1D !~2T1t8!
r

D~2T1t8!
I r„2D~2T1t8!…D

3S E
t8

`

dT e22~J1D !T
r

DT
I r~2DT! D 22J~J12D !S E

t8

`

dT e22~J1D !T@ I r~2DT!1I r8~2DT!# D
3S E

t

`

dT e22~J1D !~2T1t8!@ I r„2D~2T1t8!…2I r8„2D~2T1t8!…# D
14~J12D !2S E

t

`

dT e22~J1D !~2T1t8!@ I 0„2D~2T1t8!…2I 1„2D~2T1t8!…# D 2

22~J12D !2S E
t

`

dT e22~J1D !~2T1t8!@ I r„2D~2T1t8!…2I r8„2D~2T1t8!…# D 2

12~J12D !2S (
0<n,r

~2n2r !E
t

`

dT e22~J1D !~2T1t8!
I 2n2r„2D~2T1t8!…

D~2T1t8!
D

3S (
0<n,r

E
t

`

dT e22~J1D !~2T1t8!@2I 2n2r 11„2D~2T1t8!…22I 2n2r„2D~2T1t8!…1I 2n2r8 „2D~2T1t8!…# D .

~81!

In the critical case some care is required when takingJ→0,

Gr~ t,t8!5e24D~2t1t8!$@ I 0„2D~2t1t8!…#2

2@ I r„2D~2t1t8!…#2%1De22D~2t1t8!H E
t8

`

dT e22DT
r

DT
I r~2DT!J H (

0<n,r
@ I 2n2r 11„2D~2t1t8!…

2I 2n2r„2D~2t1t8!…#J 1e24D~2t1t8!H S (
0<n,r

I 2n2r„2D~2t1t8!…D 2

2S (
0<n,r

I 2n2r 11„2D~2t1t8!…D 2J .

~82!
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To study the behavior at finite distance of the two-time c
relation function Cr(t,t8)[Gr(t,t8)2r(t)r(t8) we distin-
guish the massive and the critical regimes. We begin with
massive case and considerDt,Dt8@1;Jt,Jt8@1; and r
,`. With the help of Eqs.~A8!–~A11! we have

Gr~ t,t8!;req
2 1S 11

J

2D D req

e24Jt

8JtA8pDt
,

Cr~ t,t8!;2S 11
J

2D D req

e24Jt8

8Jt8A8pDt8
. ~83!

When r ,`, Dt and Jt are finite andDt8,Jt8@1. We ob-
tain

Gr~ t,t8!;req
2 1

J12D

128J

e24Jt8

~Dt8!2

1
J12D

4JD

e24J~ t1t8!

16pDAt8~2t1t8!3/2
,

Cr~ t,t8!;2S 11
J

2D D req

e24Jt8

8Jt8A8pDt8
. ~84!

In the critical case (r ,`), both the asymptotic behavio
Dt,Dt8@1 andDt finite with Dt8@1 of the disconnected
and connected correlation functions are given by

Gr~ t,t8!;
r 2

4pD2~2t1t8!2S 11
1

8
A11

2t

t8
D ,

Cr~ t,t8!;2
1

8pDAtt8
. ~85!

Near the initial state~the density of particles is high!, when
Dt,Dt8!1, the decay is linear and independent ofr, i.e.,

Gr~ t,t8!;124D~2t1t8!,

Cr~ t,t8!;24Dt. ~86!

We now provide a scaling form for the two-time correl
tion function Cr(t,t8). It is known, from the duality with
Glauber’s model, that the single-time correlation functi
obeys a scaling form for large time and long distances (Dt
andr→` with the ratior 2/Dt held finite@4,5#!. The scaling
form is found asCr(t);r 22f (r 2/4Dt), where the exponen
22 is believed to be universal@5#. We further assume the
long-time and large-distance scaling formCr(t,t8)
;r 2yh(u,v), where r ,Dt,Dt8→` with u[r 2/4Dt and v
[r 2/4Dt8 held finite, and arrive at

Cr~ t,t8!;
1

pr 2H K3/2e2K~AperfAv22AK !

1K~12e22K!2
Auv

2 J , ~87!
-

e

where 0,K[uv/(u12v),`.
At this point it is appropriate to review what we hav

achieved so far. We have been able to reformulate the p
lem of the evaluation of the multipoint correlation function
in a language that parallels the field-theoretic one. This
lows us to compute in an efficient and systematic way phy
cal quantities of interest despite some technical differen
from the standard approach. While this paper deals wit
free ‘‘field theory’’ of pseudofermions, it is tempting to ap
ply the same formalism to the multispecies case where t
or multibody interactions arise. The latter, however, will
investigated in a future work by pertubative renormalizati
group techniques, as no exact solutions are available.

V. CONCLUDING REMARKS

We have studied three different approaches to the pr
lem of diffusion and annihilation of classical hard-core pa
ticles moving on a one-dimensional ring. Though Lushn
ov’s contributions to the problem are genuine a
indisputable, we have shown how an extension of his gen
ating function method to evaluate the two-point correlati
function can be cumbersome in practice, even in the simp
case available of a single species. We have seen that
advantageous to apply a generalized Bogoliubov transfor
tion used by Grynberg and Stinchcombe@12,13# in a differ-
ent context. The evolution operator can be diagonalized,
expressed as a quadratic form of two operators that are
adjoint of each other. Despite this fact the formalism
sembles the standard one and appears as a powerful
Indeed, we were able to compute the full one-time and tw
time correlation functions for an initially fully occupied lat
tice ~other initial conditions can also be studied! in the pres-
ence of a finite source. We derived a scaling form for t
two-time correlation function. We used the results of Secs
and III ~algebraic decay in the critical case and exponen
in the presence of a source! to check the asymptotic behavio
of the density and two-point correlation function. We disco
ered that while in the absence of source the modes at
wavelengths fully control the long-time asymptotics of t
density and correlation functions, in the presence of a fin
source all modes contribute. This means that in the gen
case, the long-wavelength approximations that were so
cessful in strongly correlated systems~such as bosonization
or conformal field theory techniques! do not work for the
problem at hand. Moreover, the idea of exploiting the in
grability of some spin Hamiltonians on which the multisp
cies Liouvillian maps might turn out to be more elusive th
expected. In view of the above remark, it would seem
tremely difficult if not impossible to extract from the exa
Bethe-ansatz solution of the non-Hermitian spin Hamilton
the relevant matrix elements that in turn allow the evaluat
of correlation functions@5#. We propose to tackle the multi
species problem in terms of fermion functionals, the m
difficulties arising from the two- and/or multibody interac
tions occurring in the process of mapping classical partic
to fermions. We plan to illustrate the power of the formalis
in another paper, where we plan to apply the renormaliza
group scheme. Besides the obvious advantage of formula
the problem in a field-theoretic language~perturbation
theory, etc.!, the method is applicable to arbitrary densiti
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of particles and thus complements the approach develo
by Cardy and collaborators@6–9#. In higher dimensions
however, Fermi statistics requires the introduction of a ga
field that is strongly coupled to the fermions. We also inte
to explore this line of research in the future.
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APPENDIX: USEFUL RESULTS

In this appendix we provide some useful properties of
Bessel functions of imaginary argument. We recall the d
nition of the modified BesselI n(z) function (n integer! @18#

I n~z!5
~2 i !n

2p E
2p

p

ez sin~p!1 inp dp5
1

pE0

p

ez cosu cos~nu!du,

~A1!

with I n(z)5I 2n(z). We also use in Eqs.~51!, ~81!, and~82!
the well-known propertiesI n21(z)2I n11(z)5(2n/z)I n(z)
and I n21(z)1I n11(z)52(d/dz)I n(z). The following inte-
grals occur in the evaluation of the two-point correlati
function:

Ĩ 1~r ,t ![E
0

psinqr

sinq
e4Dt cosq dq,

Ĩ 2~r ,t ![E
0

psinqr

sinq
cosq e4Dt cosq dq,

Ĩ 3~r ,t ![E
0

psinqr

sinq
cos 2q e4Dt cosq dq. ~A2!

Settingq̃5q2 i e, with e real ande.0, we have

sinqr

sinq
5 lim

e↘0

sinq̃r

sinq̃
, ~A3!

sinqr

sinq
5 lim

e↘0,q,q̃→q

sinq̃r

sinq̃

5 lim
e↘0,q̃→q

(
n>0

~e22i q̃$n2[ ~r 21!/2]%

2e22i q̃$n1[ ~r 11!/2]%!. ~A4!

Therefore,
ed

e
d

.

ly

e
-

Ĩ 1~r ,t !5E
0

pS lim
e↘0,q̃→q

(
n>0

~e22i q̃$n2[ ~r 21!/2]%

2e22i q̃$n1[ ~r 11!/2]%!D e4Dt cosq dq

5p (
0<n,r

I 2n2r 11~4Dt !. ~A5!

Similarly, we find that

Ĩ 2~r ,t !5
p

2 (
0<n,r

$I 2n2r~4Dt !1I 2n2r 12~4Dt !%

5p (
0<n,r

I 2n2r~4Dt !, ~A6!

Ĩ 3~r ,t !5
p

2 (
0<n,r

@ I 2n2r 21~4Dt !1I 2n1r 21~4Dt !

1I 2n2r 13~4Dt !1I 2n1r 13~4Dt !#

5p (
0<n,r

I 2n2r 21~4Dt !. ~A7!

With the help of the asymptotic behavior of Bessel functio
and using the properties of the incompleteG functions@18#,
the asymptotic behavior (Dt@1 andJt@1) of the following
integrals is readily found:

E
t

`

dt8
e24Jt8

A8pDt8
;

e24Jt

4JA8pDt
S 12

1

8Jt
1O„~Jt!22

…D ,

~A8!

E
t

`

dt8
e24Jt8

A8pDt88Dt8

;
e24Jt

4JA8pDt
S 1

8Dt
2

3

64Jt
1O„~Jt!23

…D ,

~A9!

E
t

`

dt8
e24Jt8

A8pDt8~Dt8!2
;

e24Jt

4JA8pDt
S 1

~Dt !2
1O„~Jt!23

…D .

~A10!

A further result (Dt@1 andJt@1) used in the evaluation o
the asymptotic behavior of the density and the two-po
correlation function~25, 59, 83–85!
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E
t

`

e24~J1D !t8I n~4Dt8!;
e24Jt

4JA8pDt
H S 12

1

8Jt
1O„~Jt!22

…D2S n22
1

4D S 1

8Dt
2

3

64JDt2
1O„~Jt!23

…D
1S n22

1

4D S n22
9

4D S 1

128D2t2
1O„~Jt!23

…D 1•••J . ~A11!

Finally, the calculation of the constantsA0 ,B0 ,C0 , whenJ.0 is performed with help of the formula@18#

E
0

`

dx e2axI n~bx!5
bn

Aa22b2~a1Aa22b2!n

; Re~n!.21, Re~a!.Reubu. ~A12!
e,

n.

.
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