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Diffusion-limited reactions of hard-core particles in one dimension
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We investigate three different methods to tackle the problem of diffusion-limited rea¢tionghilation of
hard-core classical particles in one dimension. We first extend an approach devised by LugBaikd@hys.
JETP64, 811(1986] and calculate for a single species the asymptotic long-time and/or large-distance behav-
ior of the two-point correlation function. Based on a work by Grynberg and Stinchcpifiys. Rev. B50, 957
(1994); Phys. Rev. Lett74, 1242(1995; 76, 851(1996], which was developed to treat stochastic adsorption-
desorption models, we provide in a second step the exact two-@riat and two-timgcorrelation functions
of Lushnikov's model. We then propose a formulation of the problem in terms of path integrals for pseudo-
fermions. This formalism can be used to advantage in the multispecies case, especially when applying pertur-
bative renormalization group techniqugS1063-651X99)03902-1

PACS numbes): 05.70.Ln, 47.70-n, 82.20.Mj, 02.50-r

I. INTRODUCTION nescence of excitons diffusing along one-dimensional chains
is seen to apply only as long as the initial exciton densities
The recent interest in modeling low-dimensional are small[1]. To our knowledge, there has been no system-
diffusion-limited reactions has been stimulated in part by theatic effort yet to investigate theoretically the regime of high
experimental observation of anomalous kinetics in low-densities of reactants.
dimensional systemd]. The traditional approach to chemi-  This is a technical paper in which we will explore an
cal reactions is based on mean-field theory, i.e., rate equapproach that attempts to remedy the difficulties encountered
tions for the densities of the various reactants. The latteso far. We propose to start from a quantum spin chain for-
describe well the reaction kinetics in three dimensions bemulation of the master equation, fermioni@etroduce a ba-
cause diffusive transport of reactants allows one to eliminatsis of fermion statgs and subsequently apply renormaliza-
the spatial fluctuations of the concentrations. However, irtion group techniques to deal with the interaction terms
lower dimensions, due to the lack of phase space, the reaefising in the multispecies case. Note that in the single spe-
tants spatial fluctuations can grow and develop inhomogenesies case, the method applies at arbitrary densities as the hard
ities in the concentrations. Furthermore, even in the spatiallgore of the classical particles is automatically accounted for
homogeneous case, the rate equations are not applicable iy the Fermi statistics. When various species react and dif-
less than three dimensions; for example, in the two-speciefuise, it is appropriate to distinguish two cas@$.The vari-
diffusion-limited annihilation the concentration of the par- ous species have infinite on-site repulsion with themselves
ticles decaygfor identical initial concentrationsslower than  only; this can be treated readily following the methods out-
the mean-field theory predicts. Thus the fluctuation-lined in the following sectiongii) The particles of different
dominated dynamics is beyond the classical theories, yet caspecies all have a hard-core constraint; this is far more dif-
be accounted for by simple one-dimensio(D) models of  ficult and will be investigated elsewhere. As with the other
hard-core particles. The latter are solved either numericallynethods devised so far, there is a price to pay: The calcula-
or analytically by applying techniques frorftlassical or tions involved are sometimes extremely tedious.
guantum statistical mechanicgl]. In particular, exact solu- The purpose of this paper is modest as we will focus on
tions have been obtained by interparticle distribution meththe single-species case for which fermion-fermion interac-
ods by relating the systems to dual and solvable 1D model8ons do not arise as a consequence of mapping classical
[2-5] (kinetic Ising and Potjsand by mapping the diffusion- particles to fermions. We want to show explicitly how by
reaction processes to an imaginary-time dynamics of quarelementary means we can reproduce known reétiéslong-
tum spin chains with non-Hermitian HamiltoniafS]. An time behavior of the densityand derive some other results,
alternative and fruitful approach has been developed by.e., the explicit and exact analytical form of the two-point
Cardy and collaboratof$-9]: The idea is to reformulate the correlation one- and two-time functions. The paper is in-
original problem in terms of a field theory of interacting tended as an introduction to the fermionic functional integra-
bosons and subsequently use renormalization group techion approach that we plan to combine in future work with
nigues. This is a powerful method as it applies to arbitrarythe renormalization techniques to treat the multispecies case.
dimension and low densities of particles, a regime where In Sec. Il we define the model, introduce notation, and
universal behaviofscaling is usually observed. Despite the review an extension of a method developed by Lushnikov.
progress achieved in this field, the multispecies case is stilbection Il is devoted to the application of an elegant tech-
poorly understood. Furthermore, when the density of parnique introduced by Grynberg and Stinchcombe in a differ-
ticles is high, the hard-core constraint on the dynamics of thent context to evaluate the two-poi@ne-time correlation
diffusing particles becomes important. Experimentally, thefunction. Section IV deals with a powerful formulation of the
single-species fusion model used to describe the photolumproblem in terms of path integrals of pseudofermionic vari-
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ables. We illustrate the technique by computing the two-timebelow. We also point out that in this model the “annihilation
correlation function. A brief discussion concludes the paperate” (J+2D) is always bigger than the “creation rate”
in Sec. V. (J).
To solve the Schidinger equation in imaginary time,
II. LUSHNIKOV'S APPROACH Lushnikov performs. agordan-Wigner transformation and in-
_ o _ . troduces the fermionic operatom,=II;.y(1—2n;)o,.
This section introduces notation and summarizes and egecause of the form of the resulting non-Hermitian Hamil-
tends Lushnikov's genuine approach. We consider a lattic@ynjan, it is appropriate to work with Fourier modes
of N (ever) sites (Iength L:Na, a=l, and assumeN/2 :(ei(ﬂ/‘l)/\/N)Emame_iqm_ The antiperiodic boundary con-
ever), with periodic boundary conditions, on which classical ditions[11] lead toq= * (21 —1)@/N, 1=1,2, ... N/2. On
(spinless particles with a hard core can diffugennihilatg Fourier transforming, the evolution operator reads
to adjacent emptyoccupied sites with rateD. Wheneverthe _5 - h o+
; o . L . a>0Lq, Where i;=a, a,)
arrival site is occupied, an annihilation reaction+1
—(J) takes place. A source of intensityinjects pairs of

particles on adjacent site€¥(—1+1). Lushnikov[10] has Lq=2(3+D)[cosq(ng+n_g)+sing(aga_q—ala’ )]
managed to rewrite the master equation that describes the i it
annihilation and diffusion processes described above in +2D[sinq(aga-qt+aga-q) —(Ng+n_q)]-JIN. (4)

terms of an imaginary-time Schdimger equation
Now, by a BCS-like ansatz

d
Gl O)Y=Llu(v), (1)
|¢<t>>=qf>[0 |¢q<t>>=ql]O [Aq(Daja’ 4+ By(1)10),
whereL denotes the so-called Liouvillian, which by abuse of (5)

language we will call a non-Hermitian Hamiltoniaj(t))

represents the state of the system at time Lushnikov[10] is able to decouple the dynamical equation as

= + d
lp(t)) % P({n}'t)m'l(_{[n}) T iy 10 2 a|'/fq(t)>:£q|’/’q(t)> Vv g>0. (6)

wherem’({n}) represents the sites of configuratim that  For 5 |attice that is initially completely occupied, i.e.,
are occupied. The Liouvillian is given 0] A4(0)=1 andB,(0)=0, one solves the above equations us-
ing

+ _+ + - -+ - -
EZ(J+D)2 (OmOmi 1T OO i1 T OO 1 T 0o m_1)
m

Aq(t)= (poeP?'—p,efr),
+DY (0710 = O 00— 20 o) = IN. ©) 4(J+2D)sin2(§
m
WhenJ=0, i.e., there is no source, in addition to diffusive —(J+2D)sing . .
processes with a ratB, only irreversible reactions (#1 Bq(t)= q (eP2'—eP1l), (7)
— ) with rate 2D take place. 2(J+2D)sir? E)

For a finite J>0) source, the diffusive processes (1
+J—0+1 and J+1—-1+J) take place with ratel
+D and we also have reversible reactions: Particles are aRyhere
nihilated (1+1—(J) with rate J+2D and created @ —1
+1) with rateJd. It is worth emphasizing that these rates are
not independent and are chosen such that the Liouvillian is ~ P1=~2(J+2D)(1-cosq), p,=2J(1+cosq). (8)
guadratic in the spin variables for a single specid®e
higher-order terms cancel due to the properties of Pauli may, the apsence of a sourcd=0), the solution simplifies
trices. In then-species case, this property no longer holds ifconsiderably to
we assume hard-core repulsion between all species. Indeed,
one obtains a spin Hamiltonias€ n/2) that is a polynomial
of higher order in the spin operators and in general cannot be A4(t)=exd —4Dt(1—cosq)],
solved exactly. If, however, we assume infinite on-site repul-
sion only between particles of the same species, we can re-
write the Hamiltonian as a quadratic form of coupled spins

q
1/2. The latter can be solved by the techniques presented Bq(t)—cot<E){exp[—4Dt(1—cosq)—1]}. ©



1998 P.-A. BARES AND M. MOBILIA PRE 59

At this point it is worth noting that the ket(t)) character- q
izes the state of the system at any time without, however, > Pinho=11 (Bq(t)_Aq(t)COE =1. (19
being an eigenvector of (the Liouvillian is not normal; {n} a0

g g
however, see below

In Ref. [10] Lushnikov calculates the density of particles Next expand the argument of the exponential as

by the method of the generating function, which we extend
in order to evaluate the two-point correlation function. The G(X,Y,z,t)
density reads

=<0l[l+(xeu+ya+r+z)

p<t>=§ n{nHP(n}t Vi, (10
n
2
wheren;=0,1 is the eigenvalue of the occupation operator Xngm ant| 2 m#%n,# Andn’
n,=a'a;. Similarly, the two-point correlation function is
written as
+x7 3> a,+ X, aa
n<i n>i,n#i+r
G.(=(nni. ) (=2 n{nhn, ({nHP{n}b),
{n} (11 Tyz E Andj4r T ajir E Sy

n>i+r n<i+r,n#i
where the translational symmetry of the system has been
used. We observe that in this formalism TXYG eyt q];lo

— ~|n Aqg(t) .
p(t) (0|exp<§n: O'n)n||l//(t)>, x(z—?\l nzm a;a;gn(q[n—m])—sq(t))|o>.

17
gr(t):<0|ex%2 0'n)niniJrr|‘7b(t)>a (12
" In this expression, only the terms proportional tay”
as one can check using the explicit form|gi(t)) (develop contribute tog,(t). Let us call the first of these terngs, ,
the exponential, order each term, and perform a Jordan-
Wigner transformatiofi10]). It is appropriate to consider the G;=(0|xya . a
generating function

> 2 2Aq(t) 2 a;rna:l Sm(q[n_m])

_ _ _ N
G(x,y,z,t)=<0|exp(><0i +y0i+r+2n#i2i+r Un)|'r//(t)> a-0 nem Aq(t)cotg—Bq(t)
= NN r S0 == p By (1)
% XMiyNi+rz=in +rP({n},t). (13 « H q - 10)
74 =0 1 By (1) —Ag(t)cots
So we have 2
2 sinqr 1
9 | 3, o o
_9 =X
P(t)_ aXG(Xazizit) - ’ yN g>0 q _Bq(t) q#q’>0 Aq,(t) q
x,y,z=1 A(D) 1- —COE
q By (1)
> (18
G, (t)= G(x,y,z,t 14
0= Gy Oy 2y| (19

) ) ) In the absence of source, we hakg(t)—0 and Bg(t)—
To compute the generating function, we rewrite the state as_ cot(@?2) exponentially fas{see Eq.(9)], so that in the

thermodynamic limit N—co), the asymptotic behavior of

|</z(t)>=quo [Agafal ,+By(1)]0) G.(t) follows as
2A4(t 7 1 (= dgsingr
:q];[O Bq(t) — %ﬂzm afnaxsir(q[n—m]))|0>. G (t)~ e ayel—> ;Jo W (19)
(15 Aq(t)

Note the normalization condition due to the conservation oWe can do the same for the density and in the thermody-
probability namic limit one obtains
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which implies for the connected correlation function that

p(t)_—H (O|[1+ xa|+22 a,
1
C()=G/(t)—p"()~—g—=¢- (24)
+ 22 D asay
i#n.n’.n>n’ Unfortunately, in the massive cagghen the source intensity
is finite), this method applies only to the computation of the
+x2 &>, an+2 ana |+ - ] density. Assumindt,Jt>1, we find that
n<i

( Aq(t) _— p(t)=peqt2(J+2D)
x| 2=~ 2 apafsina[n—m]) i}
n>m Xf dt/e—4(J+D)tI[|0(4Dt/)_|1(4Dt,)] (25)
t

- Bq(t)) |0)
z=1,x=0 \/j (1 J ) e—4.]t (26)
~————t | 1+ = | —,
f 20 VI+J+2D 2D/ 8Jt\/8 7Dt
N
(t) '
— where pe=+J/(\J+ J+2D) represents the equilibrium
q(t)cotE value of the density, in agreement with Lushnikov’'s result
[10]. In the next section we provide the full two-point corre-
In the above, we used the identities lation function forJ>0.
_ - 1 q cogq[i— ]) IIl. THE PSEUDOFERMIONIC APPROACH
> sin(g[m—i])= 3| coto +————|, : . . .
m>i 2 2 . q In this section we evaluate the full two-point correlation
siny function in the general case by means of a powerful formal-
ism. The central idea is to perform on the fermionic non-
1 q cogqfi -1 Hermitian (and non-normalHamiltonian a generalized Bo-
> sin(g[m—i])==| cotz - ——— goliubov transformation, which allows us to work with a
m<i 2 2 sing diagonal evolution operatafsee Refs[12,13). Following
2 previous work§12—14,5, we denote each of théd'dossible
configurations by a ken):
= > sing[n—-m])== cotg
- (nIn")=8pn, 2 [n)n|=1. (27)
(21 n

The evaluation of the two-point correlation function requires

the calculation of all the terms proportional xg, which in

general is a very hard task. In the following sections we will

be able to solve this difficulty by reformulating the problem

in a different language. IP(t))=2>, P(n,t)[n). (28
Using the explicit form ofA,(t) andBg(t) [Eqgs.(7)—(9)] n

and the results of the Appendix, we find the asymptotic be-

havior of the density in théirreversible critical caseas[10] ~ The master equation governing the dynamics of the annihi-

lation and diffusion processes described in Sec. Il can be

rewritten as

In this Fock space, we can efficiently record the probabilities
for the various configurations in the ket

ef4Dt

™ 1

— Dt cosq_ o—4Dt —
p(t) fo dqé e 14Dy~ == )
(22 ZIP®)=UP®)=2 &P(n,Hln)

Similarly, the asymptotic behavior of the two-point correla-

tion function is = > [A(n’=n)P(n’,t)—A(n—n")P(n,t)]|n),

4Dt ; n,n
6,0~ "da Tk (1 cosge>: o= @9
' T Jo sing
wherel/ denotes the evolution operator aAdn’—n) and
=e P > [lyn_r41(4Dt) =I5, (4D1)] A(n—>nf) represent the transiti_on rates exprgssed in terms of
O=n=<r JandD in Lushnikov's formulation. The matrix elements for

the operatoi/ are
Tl

~— 2
(8wDt)%?’ @3 (n'|Uny=A(n—n’) V n'#n, (30)
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— Lq=2[D(1—cosq) —J][(£lé+ " (£ g cog 0,

(nny=— > A(n—n"). (3D)
n'#n +(SIMP 0g) (§ &L g+ éqéd) +2(£ 4&l+ g6 )]
This Fock-space formulation was used in Rdfs2,13 to ++/J(J+2D)sing[ (cos 2Bq)(§1q§g+ Eqé_q)
study a stochastic adsorption-desorption problem. In what ] R
follows we will specifically focus on the reaction-diffusion +(8in260)(£qéq+ €= g o)1+ 2J. (37)

problem in one dimension. _
Let us now introduce the left and right steady states, reTo get rid of the terms that do not conserve the number of

spectively, pseudoparticles we choogg as
~ VJ(J+2D)sing
(=2 (|, =2 P(neqln), (32 tan 204= 33 Dycosq—D (38)

where P(n,eq) denotes the probability for a configuration SO that the Hamilton operator becomes

[n) at equilibrium. It is easy to check thaf' has no effect

on |x) and(x| and .tr.\e conserv'a.tion of probapility Igads to L=— ZO )\q(ggg(ﬁ- g’[qgfq)z _2 Aqufq, (39
(x|x)=1. The transition probability from a configuratifm) g d
to [n’) is simply W, (t)=(n’|e“'|n).
We intend to calculate the density and two-point one-timeVhere
correlation functions of a system initially in the staig,)
=3,P(n,t=0)|n). The occupation number operatar be- Aq=2[D(1-cosq)+J] (40)
ing diagonal in the basi§n)}, we have o -
on account of the periodic boundary condition;{ o cosq
=0). Now it is readily seen thdiy| and|x) act, respectively,
p(t)= 2 (n'Ine[n" YWy o ()P(n,t=0) as left and right vacua, i.e¢q|x)=0 and(}|§£=0. To sim-
mn plify the calculations, we express the initial ket statg) in
~ terms of the steady stafg). We consider here two kinds of
— ' Lt — — Lt
_E, (nIn-eZ[mP(n,t=0)=(xIn.e"|¢o) (33  initial conditions.(i) The whole lattice is initially filled. We
n,n . . . T
write | ¢o)=|all) and immediately concluday|all)=0. Us-

and similarly ing the inverse of Eq(35), one can check that

_ _ T et
G(1)=3 (0[N0 YW o (1)P(n,t=0) [ai) =11 11~ (cotdq) €™ o1l x)
Y _ cotb’q tot
=S (0 |nnnenyP(n,t=0) = (¥Ininme do). —exr{—% 2 fat-a) Y- (4

(34 (i) The lattice is initially empty. One can check in the same
way [14] that

wherer=|m—I|. At this point, we perform a generalized
Bogoliubov transformatiorirotation supplemented by a re-
scaling [#0)=10)= 11 [1+(tandg) " ollx)
T —1lgj T tané
cosé sin g, a
&q :( @ C0Sfq : q) q 35 =exr(2 5 “gggiq)m. (42)
¢ g —asinf; a ~cosby/\a_g a

- t
in order to obtain a diagonal representation for the evolution’ '€ time dependences gf(t) and§,(t) follow as

operator. This transformation is orthogonal, i.e., invertible Cfte Lt it
and canonical, in the sense that it preserves the anticommu- &t)=e “¢em=e "agy, (43
tation relations of the,’s, namely,
G(h=e “elef=elgl. (44
(&l &gy =0qq, {&h.&01={&4.641=0. (36)
a5 a9 47> ar=d Futhermore, we have
Despite the fact that th€, and g; are not adjointof each o~ _
other, this representation will be very useful in the following. (€k, €, (1=0)=(x| &k &k lall) = (coty ) bk, —«, (49
We seta=[J/(J+2D)]¥* so that the mode evolution
operator becomes and
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(€k, 8k, 8k 8k,) (1=0) Gi(t) only terms such agx|¢ élall)=(¢ &) (t=0)

and(x|é - kéw & qéq/lall)=(& &€ qfy) (t=0) survive:
These were evaluated with the help of E@b) and(46). In
the thermodynamic limit, we arrive at

= (cot by, )(cotby,) S, —k,5, —k,

+(cotby )(cotby,)( Sk, ,—k, 0k, —ky

_ 2
O (46) p(=Y >, (sir? 6,+e 2 sin 6, cosé, cot §,)
k>0
as one can check by applying Wick’s theorésee also Sec. 1 (=
IV). Using the properties of the Fourier transform and the %—J do(sir? 6,+e~#d'cod 0,)
generalized Bogoliubov transformati@B5), the expression mJo
of the density and the two-point correlation function become, NG}
respectively(for a lattice initially filled, | o) =|all)), - 42(J+2D
JJ+J+2D ( )
1 * ’ ’ ’ - 4
p(t)=x ) sir? g, xft dt'[15(4Dt') —1,(4Dt")Je~ 40P,
k
PRICES] 5 (48
- Sin 6y cosb, (x| é_ & e all
vk N “ (Xl ibeetal) which coincides with Eq(25).
(47) It is worth emphasizing that this result is general and

works for both themassive(J#0) and thecritical (J=0)

and one can do the same for unconnected one-time correlaases. The point here is that the lindit->0 is not singular,
tion functiong,(t) [Eq. (34)]. despite the divergence of cét>—c. In fact, integration

To derive tractable formulas, we have performed tediousver k and k' of terms proportional to sif cot6, yields
but straightforward calculations. Indeed, we have extractedinite results. Therefore, we can perform the computations
the time dependence @f(t) and G,(t) using Eq.(43) and (35 atJ finite and set subsequently=0 in p(t) andg,(t).
commuted all the pseudocreation operators to the left of the Similarly, the two-point(one-timeg correlation function is
pseudoannihilation operators. In the expressiop(@) and evaluated for a lattice initially filled asr &|m—1])

5 1
Gu(eq = plet — ;

T . m™ 1 7T . . 2
fo dgsir? eqcosqr)( fo dq’ cos 6, cosq'r Efo dgsin 20qsmqr) , (49)

1
Gi(1)=Gi(ed=[p(1)~ pegl+—

f dq e M\t co 04 cosqr)( fwdq' cog Oy COSq'I’)
0 0

1 T ) ) T )
+— f dgsin 26, singr f dg’e ? " cos’ 6, coty sing'r
272\ Jo 0

1 ™ T
——2<f dgsir? 6, cosqr)(J dg’ e 2o cog 4 cosq’r)
72\ Jo 0

1 m m 1 (= 2
- — i i I a— 2\ g't oj . ’ | = _>
4772( fo dgsin 26, smqr)(jo dqg’ e”“"a" sin 26, sing r) (Wfo dq e 2t cog Gqcosqr)

1 ™ T
—(?L dqg e #d' cos 4, cotd, sinqr) ( fo dq’ e 2t sir? 6, cotfy sinqr), (50)

where we separated the static contribution to the correlation function from the dynamic one. Using known properties of
modified Bessel functions givefsee the Appendjxand writing I/ (x)=(d/dx)I,(x), we finally infer [notice thatG,(eq)

=pad)
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G (t)=p(1)2+2(J+2D)(Ays— Cop) fdt'e—‘““m"[l (4Dt")—1/(4Dt’)]

!

. \/J(J+22D)Bof°°dt,e4(J+D)t,
t

r
—1,(4Dt")
2Dt" '

—(J+2D)3/2 ” ra— ! l ’ ’ ’
NG 2 ft dt'e 4D D], (ADt') =215y (4Dt')+1},_(4Dt')}

o0 2
2(J+2D)ft dt’e 40D | (4Dt’)—| ;(4Dt')])

o , on_ (4Dt’
+2(J+2D)3 (2n—r)<f dt’e 40D 2= J ! )
O=n<r t 2Dt,
x| > (f dt'e4“*'3“’{2!2n_,+1<4Dt'>—2|2n_,<4Dt'>+Ién_r<4Dt'>})}. (51)
osn<r t
|
In the above formuldy,By,Cy have been defined by whenJ=0. Paying due attention to the apparent singularities

occurring in this limit, we find
1 (= 1 (=
AOE;L dqcog 6y cosqr, BOE;L dgsin 26, sinqgr,

1 (= .
C(t)= FJO dgsin 26, singr

1(m.
CoE—f dgsir?,cosqr (52)
mJo -
XJ dg’e 2 't cotfy sing’r
or, more explicitly, in the massive capsith the help of Eq. 0
(A12)], Lo ,
| — d — 2\ 4t
J+2Df” dQ< cosq(r+1)+cosq(r—1) (Trfo qe ~a cosqr)
Ao= —| cosqr—
T 0 )\q 2 1m
—| = dge ?d'cotf,singr
ot (53 (”jo | ’ q)
4\/3?+23D’

X

1 (=
;Jl) dg’ e 2ot sin? 0, cot sinqr)(S?)

33+ 2D) [~ d
Bo= T fo

)\—q[cosq(r+1)—cosq(r— 1)]
K or, in terms of elementary functions,

1— 2
= —gr‘ng. (54)
| Ce(t)= 2 € *™lan r42(4D)~ Iz (4DD)]
J (= cosg(r+1)+cosq(r—1 =
CO:;j )\—q(cosqur al )2 al ) )
0 Mg —4Dt
+ e lon-
(1+0)? 0$En<r n r)
RN 3r) % ;
—( > e“DtIZn_rH) ~[e7*!1,(4DY) %
0=
with the notation A
(58)
D
(= =<1. (56) . L . .
(J+D)+J?>+2ID This expression is equivalent to the result derived by a well-

known mapping of Lushnikov’'s model to Glauber’s 1D Ising
The formula can be evaluated numerically. The connectethodel[5].
two-point correlation functiorC,(t)=gG,(t)— p(t)? follows Finally, we compute [using formula (All)] the
immediately from the above. To establish a connection withasymptotic behavior of the two-point correlation function
the results derived previous[$] we explicitly evaluate’, (t) C,(t) for Dt>1, Jt>1, andr <o,
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[ lem are not adjoint of each other, we find the familiar results
C(t)~— PP (J+2D)(1—- )%+ JI(1+¢)?
3342D) . (a0 =Gl m=1.
+T(1—§2))m- (59
As expected for a finite source intensify-0, the density (nl 7l>=eXF<% 7q 77q>v &l =ndl ),

and one-time correlation function decay exponentially with
time. Morever, the one-time correlation function also decays
exponentially with distance.

A similar calculation can be performed for the case ofan ~,, J -~ ~ o~ % + __i
initial empty lattice (¢$o)=|0)). In this case the densi- <77|§q_(9,7§<77|’ (rl&q=Calng . &lm= (97lq|7]>'
ty is p(t)=237dt'[1o(4Dt')+1,(4Dt’)]e 40O ~p
—e MY 87Dt [10]. It has been showr12], via the _ _ _
mapping to the Glauber dynamics, that the nearest neighbddost importantly, the closure relation holds true, i.e.,
connected function decays D¢,Jt>1) as (9,

~peqef4jt/\/27TDt.

The large-time and large-distance behavior of the one- * _ * A
time correl%’;\tion function an also be studied. In fact, in the J EI d77q dg exp( zq: " 77q)|77><77| L 62
critical case it has been sho#,5] that the one-time corre-
lation function obeys a scaling form.

Here we investigate the behavior 6f(t) in the limit At this point, we know from field theory how to calculate
wherer and Dt—oo with u=r2/8Dt finite. In the massive <;(|nmeﬁt|a_||> and<}|nmnm+re“|all> using the path-integral
case, we do not expect a scaling form formalism. We discretize time iM infinitesimal intervals of

width e=limy,_..(t/M).L is normally ordered and the clo-

[ 2D rz,u ionis i i
C(t)~— 1+T§,_1(1_§2)g( 2 ), (60) sure relation is inserted into the above formulas. We have for

Ar the density(for the lattice initially filled
where
3 t)= dy; . d
g(rz,U)E \/geJFZIZDu. (61) p( ) q,a=1;[. ..M nq,a nq,a
N ~
The effect of the source is to disrupt the spatial correlations, ><exp< - q% 77q,a77q,a) XNl 7m)
i.e., to make them short ranged. In this sense the finite source '
prohibits the forma}tion of arbi_trarly large vacancy domains. X | €°M| mp—1) - - - (72| €52] ;1) (771 €51 all),
In the next section we will introduce a field-theoretic ap-

proach to deal with two-time correlation function. Our ap- (63

proach and the results obtained thereby complement the ex-

act treatments of the critical ca$&b]. It is worth pointing h
out that Glauber calculated in his pioneering work the two-V"e'€
time two-point spin correlations functiog,16].

e 1
IV. FIELD THEORETICAL REFORMULATION N|||m <n1|e551|all>=exp( ~5 % Cotﬁqnslln*q‘l) ,

The purpose of this section is to reformulate the results of (64)
the preceding section in field-theoretic language, i.e., in
terms of path integrals of fermionic variablésee, for ex-

ample,[17]). We define the Grassmann numbey@,na‘ , (}|n | 7)
which anticommute with each other and with the fermionic "
operators introduced in the preceding section, i.e., 1 i , ~
=— sir? 6— 2, sin6, cosb (x| &_ éwr
Rt N P N R R P 3 N| = ST - 2L sinficosti (x|¢-éic )

t t

={7q ,fq,}z{r/a §§}=|;7E £q1=0. We fol!owdstarlga:]d .
practice and consider thmherent stateassociated with the _1 o ,
fermionic variables. We recall that pseudofermionic opera- N ; S 0 g (SIN 6y COSGi) M 7w |-

tors requiring the introduction of &eft vacuum(;(l and a
right vacuum|x), ergo we define the righty) and the left

coherent state§7|, respectively, a$z)=exp(—Sq7éh|x)
and (7| =(x|exp(—2q&7,)- Despite the fact thag and & Taking the continuum limif17], we arrive at

(65
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1 . Furthermore, we have in the continuum limit
P(t)=ﬁf 1;[ dng (1) dog(t) [[Tlqdn% (1) dpg(t)e So=1]
X Sir? 0,— 2, sin6, cosby nq(t) g (t
% S8 2, sinb k"q()"q()) (7plt2) 75 (1),
S () 7 (0) | &S0 Wt = [ TI dns0 dag(tmylta) (e
X ex —% 5 7q(0)724(0) |e Y, 4 7q 7q(1) 7p(12) 7, (Lg
(66) =y pre Mot (72)

where the Liouvillian operatof acts as thédamiltonianof  aApplying Wick’s theorem leads to
field theory. By abuse of language we c&j(7* (1), 5(t))
the Euclidean actiorof our problem, which is defined by

(€pé r>(t)=< 7p(t) 7 (1)
So(7* (1), m(1)) PP PP

1
Efotdt’g [ 78 (t") e (") = L5 (1), m(t))] ><exp<—E % (cotaq)ng(O)ntq(o))>
S

2)\pt. (72)

=0y, _pr(cotdy)e”

+ 2 751(0)79:(0). (67)
q!

With this result, it is straightforward to calculate the density
Taking average$>s0 on the Gaussian distribution, the den- using Eqs.(72) and(68).
sity can be rewritten as The computation of the correlation function requires
evaluation of terms such &%, &0&k3éka)(1). We generate
in the standard fashion the multipoint correlation functions.

1 _ _ The generating functional in discretized time reads
p()=15 (; sir? 6,— >, (sin6, cosek,)nq(t)nq,(t)>
K.k’
cotdy % Z[9q.:9% 1={exg > —1(c0t6) * "
X ex —% 5 74 (0)7%4(0) | ) . (68) 9a,a:9q’,a’ - 5 o) Mq.17-q,1
So
+a§2 (gs,anq,a—{_ n;,agq,a)] ) >
We proceed to discretize the free Euclidean ac8gnwhich S0
is bilinear, as (73
1 0 o ... ... Here gq,..95 ., (Grassman numbeyrsienote the coefficient
—a 1 0 of the source terms. Note that this functional differs from the
0 —-a 1 0 usual field-theoretic ongl7] by a term that codes the initial

s(q)=| - _ . . |, 9  condition, i.e.,Hq>0e°°‘(’q”al”tq,l. Taking this term into ac-
: B B : : : count, however, is no trouble, i.e.,

0 . . .. : 0
0 Cee 0O —-a 1
Z[9q,03 9y o= q];[o (690851t g* 07100 10q)
wherea=1—(t/M)\. M
Following Ref.[17], we find defS(q)]=1 and <1 TI e96.i5.1(0 " "9q" j8q.q" (74)
qq’ =2

lim S, 5(q)=e Mata"ts)

M—ee Considering that the source term will be set to zero in the
end of the calculation and noting that fer=1 only pseudo-
creation operators contribute, we find it convenient to work

V a=1,...M=8, t,=—. (70) with
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5 1 8%Z[9q.0:9% o
Z[gq,a;g*r’ar]:H ex _gtqylg;’J_COtaq <§ & >(t): [gq,a gq !a]
a q 2 kq Sk * * *
59—q,15gq,15gkl,M59k2,M59q,259—q,2 G=g* =0
+2 ga"ie)‘q(‘i‘ti)gqu]—5qu,). (75) (76)
q’ ihj>1
From the definition it follows then that or, more generally,
(& 6 -+ i i) (D)
= (e b+ b brelal) = (e b & Ereext] —5 3 cotbele! o] 1)
=(XI8k 6k 6k 6k X186k k] - Sk Skl 2 < asqs—q|IX
B Z[dq,0: 95 '] |
89” 4,1805,1° " * 9% 4,1095, 100K, 1 " 0% MOYy 11000, 200 a2 - 5gqn,259iqn,2\ o
(77)

As an application of this field-theoretic formulation we will now extend our approach to the computation of the two-time
correlation function for an initial statep,),
Gt ) =(n . (t+t ) () = (xIne™ ny e o)

=>, (n'|n;. €' nefnyP(n,0)
n,n’

= E <n/ | nl+r|n,><n"| nl|n">Wn’n”(t,)Wn”n(t)P(nvo)- (78)

n,n’.n"

As above, we consider an initially filled latticédy) =|all)).
To perform the computation d@f(r,t,t’) we need to evaluate terms such as

~ , 1
(x|&ptpe™ Eqéqetlall)= 77p(t+t’)77p’(t+t’)77q(t)77q’(t)ex% ) Ek: COtﬁkﬁi(O)n*k(O))> : (79
So

This expression can be calculated by using the generating functional, where as théfojeis discretized intoM (N)
infinitesimal time stepsgrespectively, with M,N—oo:

<}| gpép,eﬁt’gng,eﬁt|a||>
B 2 g0 9ty o] |
59" g, 1007, 109" ¢, 100%, 100 0% 110G w+nOT 1+ n0Tg, 209-q, 209q,200 g, 2

g=g*=0

=g~ (pThp) (=g Mg N[ (cOt ), COt By 8 — pr Og,— g + COLO, COtOy (S—p g1 O—qpr = O—qpd-prq)], (80

where the continuum limit for the time has been taken. Applying the same technique to each tgmt of) yields
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g,(t,t’)=p§q+2(J+2D)peqf dT e 40D ,(4DT)—1,(4DT)]
t

+J(J+2D)< FdT e 20+DIT (2DT)+1/(2DT)]
t!

deT e-2<J+D>T[|,(2DT)—|,’(2DT)])
t!

0 r 2 0
jt,dT e‘2<J+D)T—Ir(2DT)> —2(J+2D)2( ftldT e‘z(“D)T[Ir(2DT)—Ir’(2DT)])

J(J+2D)
T DT

4

X

fwdT e2<J+D><2T“’>[|r(zD(2T+t'))—|;(2D(2T+t’))]>
t

+(J+2D)?

f dT e 20T — | (2DT)
t' 2D(2T+t')

x| > ftdTe’z(”DWT“')[ZI2n_r+1(2D(2T+t’))—2IZn_r(ZD(2T+t’))+Ién_r(ZD(2T+t’))]

osn<r

+J(J+2D)< deT e 20+D)@TH) | (OD(2T+t'))—| 1(2D(2T+t’))])
t

X

fde e—2<J+D>T[|0(2DT)+|1(2DT)])
t,

J(J+2D)
2

o0 , r
f dT e 20TDIRT+H) | (2D(2T+t’))
t D(2T+t")

X

oo r o]
fdTe‘z(“D)TﬁI,(ZDT))—2J(J+2D)<f dTe—2<J+D>T[|,(2DT)+|,’(2DT)])
t’ t’

X

FdT e2<J+D><2T“’>[|r(20(2T+t'))—|;(2D(2T+t’))])
t
B 2
+4(J+2D)2U dTe2<J+D><2T“’>[|0(20(2T+t'))—|1(2D(2T+t'))])
t
B 2
—2(J+2D)2U dTe2<J+D><2T“’>[|r(2D(2T+t'))—|;(2D(2T+t'))])
t

+2(J+2D)?

S (oo [(are o
t

osn<r

)Ian(2D<2T+t'>>)
D(2T+t")

x| > ftdTe—2<J+D><2T“'>[2|2n_r+1(2D(2T+t’))—2|Zn_r(zD(2T+t’))+|gn_r(2D(2T+t’))].

osn<r

(81)

In the critical case some care is required when takingO,

Gi(t,t)=e 4P (2D (2t +17))]?

—[|r(2D(2t+t'))]2}+De2D<2t“’>‘ fxdT eZDT%h(zDT)HOE [lon_r+1(2D(2t+1"))
t’ <n<r

2 2
_< 2 oo re1(2D(2t+1)) }

o=n<r

—I2nr(2D(2t+t’))]]+e“D<2‘“'>{( > I (2D(2t+1"))

o=n<r

(82
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To study the behavior at finite distance of the two-time cor-where O<K=uv/(u+2v) <,

relation functionC,(t,t")=G,(t,t")—p(t)p(t’) we distin-

At this point it is appropriate to review what we have

guish the massive and the critical regimes. We begin with th@chieved so far. We have been able to reformulate the prob-

massive case and considé&t,Dt’>1;Jt,Jt’>1; andr
<o, With the help of Eqs(A8)—(All) we have

e74\]t

5 st
14— |p —o
2D/ P*9g3¢ /8Dt

gr(trt,)~P§q+

_ ’
e 43t

1+—) e
2D /"53¢ /8Dt

Whenr <, Dt andJt are finite andDt’,Jt’>1. We ob-
tain

Ce(t,t')~— (83

N .o e
r(r ) peq 128] (Dt,)z
J+2D e M)
+ 1
4D 167Dt/ (2t+1")32

_ ’
e 43t

J
C(t,t ~—(1+—) L —
(L) 2D /P93¢ JBaDt/

In the critical case (<«), both the asymptotic behavior
Dt,Dt'>1 andDt finite with Dt’>1 of the disconnected
and connected correlation functions are given by

(84

G.(t,t") i NSy 2t

n A7D2(2t+1')2 8 )’
C(t,t)) ! (85)
n gD\t

Near the initial statéthe density of particles is highwhen
Dt,Dt’' <1, the decay is linear and independent of.e.,

G (t,t')~1—4D(2t+t'),
C,(t,t")~—4Dt. (86)

We now provide a scaling form for the two-time correla-
tion function C,(t,t"). It is known, from the duality with
Glauber's model, that the single-time correlation function
obeys a scaling form for large time and long distandes (
andr — o with the ratior?/Dt held finite[4,5]). The scaling
form is found asC,(t)~r ~2f(r2/4Dt), where the exponent
—2 is believed to be univers@b]. We further assume the
long-time and large-distance scaling forn€,(t,t")
~r~Yh(u,v), wherer,Dt,Dt’—o with u=r?/4Dt andv
=r2/4Dt’ held finite, and arrive at

Co(t,t')~ %{ K32 K(Jmerfyv —2VK)
a

+K(1—e2K)—@], (87)

lem of the evaluation of the multipoint correlation functions
in a language that parallels the field-theoretic one. This al-
lows us to compute in an efficient and systematic way physi-
cal quantities of interest despite some technical differences
from the standard approach. While this paper deals with a
free “field theory” of pseudofermions, it is tempting to ap-
ply the same formalism to the multispecies case where two-
or multibody interactions arise. The latter, however, will be
investigated in a future work by pertubative renormalization
group techniques, as no exact solutions are available.

V. CONCLUDING REMARKS

We have studied three different approaches to the prob-
lem of diffusion and annihilation of classical hard-core par-
ticles moving on a one-dimensional ring. Though Lushnik-
ov's contributions to the problem are genuine and
indisputable, we have shown how an extension of his gener-
ating function method to evaluate the two-point correlation
function can be cumbersome in practice, even in the simplest
case available of a single species. We have seen that it is
advantageous to apply a generalized Bogoliubov transforma-
tion used by Grynberg and Stinchcomd,13 in a differ-
ent context. The evolution operator can be diagonalized, i.e.,
expressed as a quadratic form of two operators that are not
adjoint of each other. Despite this fact the formalism re-
sembles the standard one and appears as a powerful tool.
Indeed, we were able to compute the full one-time and two-
time correlation functions for an initially fully occupied lat-
tice (other initial conditions can also be studjed the pres-
ence of a finite source. We derived a scaling form for the
two-time correlation function. We used the results of Secs. Il
and Il (algebraic decay in the critical case and exponential
in the presence of a soujd® check the asymptotic behavior
of the density and two-point correlation function. We discov-
ered that while in the absence of source the modes at long
wavelengths fully control the long-time asymptotics of the
density and correlation functions, in the presence of a finite
source all modes contribute. This means that in the general
case, the long-wavelength approximations that were so suc-
cessful in strongly correlated systerfsich as bosonization
or conformal field theory techniqueslo not work for the
problem at hand. Moreover, the idea of exploiting the inte-
grability of some spin Hamiltonians on which the multispe-
cies Liouvillian maps might turn out to be more elusive than
expected. In view of the above remark, it would seem ex-
tremely difficult if not impossible to extract from the exact
Bethe-ansatz solution of the non-Hermitian spin Hamiltonian
the relevant matrix elements that in turn allow the evaluation
of correlation functiong5]. We propose to tackle the multi-
species problem in terms of fermion functionals, the main
difficulties arising from the two- and/or multibody interac-
tions occurring in the process of mapping classical particles
to fermions. We plan to illustrate the power of the formalism
in another paper, where we plan to apply the renormalization
group scheme. Besides the obvious advantage of formulating
the problem in a field-theoretic languaggerturbation
theory, eto, the method is applicable to arbitrary densities
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of particles and thus complements the approach developed
by Cardy and collaboratorf6—9]. In higher dimensions,
however, Fermi statistics requires the introduction of a gauge
field that is strongly coupled to the fermions. We also intend

to explore this line of research in the future.
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=7 > lan-r+1(4DV). (A5)
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APPENDIX: USEFUL RESULTS

Tor =5 3 {lo0-(4DV)+1z0-.2(4DD)}

=n<

In this appendix we provide some useful properties of the

Bessel functions of imaginary argument. We recall the defi-
nition of the modified Bessdl,(z) function (n integey [18]

(=

-

J";r ezsi"(p)+inpdp= ij”ez cosé cogné)dé,
mJo

S

Oo=sn<r

l2n-r(4D1), (A6)

~ v
lo(r)=% 2 [lzn-r-2(4Dt)+I2n.-1(4DY)
(Al) o=n<r

+1on—r4+3(4Dt) + 150411 3(4D1)]

with 1,(z2)=1_,(2). We also use in Eq$51), (81), and(82)

the well-known properties,,_1(2) —1,+1(2)=(2n/2)1 ,(2)
and l,_(2)+1,.1(2)=2(d/d2)1,(z). The following inte-

S

o=sn<r

|2n7r71(4Dt)- (A7)

grals occur in the evaluation of the two-point correlation

function:

~ 7singr

T — wsinqr 4Dt cosq
I2(r,t)—fO Sing cosq € dq,

~ 7singr
Ig,(r,t)zfO nd cos 2y *Pteosiqq,

Settingg=q—ie, with € real ande>0, we have

singr

singr i

sing . osinq

singr singr
sing _e\qu,?hq sing
= lim E (e—Zia{n—[(r—l)/z]}
05 q"=0
—e—2ia{n+[(r+1)/2]})_
Therefore,

With the help of the asymptotic behavior of Bessel functions
and using the properties of the incomplétdunctions[18],

the asymptotic behaviot>1 andJt>1) of the following
integrals is readily found:

% e~ At e Mt / 1
dt ~ | 1- = +0(3H 7Y,
ft V8#Dt’ 4J8#Dt\  8Jt (075
(A8)
(A2)
o e—4Jt’
dt/ ———
t V8w7Dt'8Dt’
e—4Jt 3 o 3)
(A3) AN A (373,
(A9)
» e At e 4t
dt’ ~ +0((I)3)|.
" Bt ot)? 43vemdtl Dy Y ))
(A10)
(A4)

A further result Dt>1 andJt>1) used in the evaluation of
the asymptotic behavior of the density and the two-point
correlation function(25, 59, 83—-85b
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jwe74<J+D>t’| (4Dt’)~—e_4Jt (1—i+o((Jt)2))—(n2— }> i——+0((Jt)73)
t " 43\/87Dt 8Jt 4/\ 8Dt  643D12
+(n2_})(nz_§> L oY+ (A1)
4 4]\ 128022 '

Finally, the calculation of the constamg,,B,,Cy, whenJ>0 is performed with help of the formuld 8]

o o 3 B’
J axeap0 = Bar NP B
VY Rev)>—-1, Rda)>Rdp|. (A12)
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